Symbolic Powers of Ideals: Problems and Progress

Mike Janssen

March 5, 2015

Math on the Northern Plains!

Mathematics on the Northern Plains Regional Undergraduate Mathematics Conference

Saturday, April 11, 2015

Dordt College

Sioux Center, IA

Introduction

Outline:

- Ideals and their powers
- Questions of study
- Recent results

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

We will primarily consider homogeneous ideals $I \subseteq R = k[x_0, x_1, \dots, x_N]$.

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

We will primarily consider homogeneous ideals $I \subseteq R = k[x_0, x_1, \dots, x_N]$. [The word *form* is interchangeable with *homogeneous polynomial*.]

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

We will primarily consider homogeneous ideals $I \subseteq R = k[x_0, x_1, \dots, x_N]$. [The word *form* is interchangeable with *homogeneous polynomial*.]

Example

In $\mathbb{C}[X, Y, Z]$ such an ideal is $I = (XZ, YZ, X^3 - 3X^2Y - XY^2)$.

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

We will primarily consider homogeneous ideals $I \subseteq R = k[x_0, x_1, \dots, x_N]$. [The word *form* is interchangeable with *homogeneous polynomial*.]

Example

In $\mathbb{C}[X, Y, Z]$ such an ideal is $I = (XZ, YZ, X^3 - 3X^2Y - XY^2)$. A non-example is $J = (X^2 - Y, Z^2)$.

Given a ideals $I, J \subseteq R$, we may multiply ideals.

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r} : G_i \in I)$$

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r}: G_i \in I)$$

Example

Let
$$I = (X, Y) \subseteq \mathbb{C}[X, Y, Z]$$
. Then $I^2 = (X^2, XY, Y^2)$

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r} : G_i \in I)$$

Example

Let
$$I = (X, Y) \subseteq \mathbb{C}[X, Y, Z]$$
. Then $I^2 = (X^2, XY, Y^2)$, $I^3 = (X^3, X^2Y, XY^2, Y^3)$, etc.

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r} : G_i \in I)$$

Example

Let
$$I = (X, Y) \subseteq \mathbb{C}[X, Y, Z]$$
. Then $I^2 = (X^2, XY, Y^2)$, $I^3 = (X^3, X^2Y, XY^2, Y^3)$, etc.

Question

How do different (ordinary) powers of an ideal compare?

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r} : G_i \in I)$$

Example

Let
$$I = (X, Y) \subseteq \mathbb{C}[X, Y, Z]$$
. Then $I^2 = (X^2, XY, Y^2)$, $I^3 = (X^3, X^2Y, XY^2, Y^3)$, etc.

Question

How do different (ordinary) powers of an ideal compare?

Answer: We have $I^r \subseteq I^t$ if and only if $r \ge t$.

ideal gets (strictly) smaller

Definition

Given an ideal $I \subseteq R$, we define the m-th symbolic power of I to be

$$I^{(m)}=R\cap\left(\bigcap_{P}(I^{m}R_{P})\right).$$

Definition

Given an ideal $I \subseteq R$, we define the m-th symbolic power of I to be

$$I^{(m)}=R\cap\left(\bigcap_{P}(I^{m}R_{P})\right).$$

This can reduce to a much cleaner definition if more information about I is available.

Definition

Given an ideal $I \subseteq R$, we define the m-th symbolic power of I to be

$$I^{(m)}=R\cap\left(\bigcap_{P}(I^{m}R_{P})\right).$$

This can reduce to a much cleaner definition if more information about I is available.

Question

How do different symbolic powers of an ideal compare?

Definition

Given an ideal $I \subseteq R$, we define the m-th symbolic power of I to be

$$I^{(m)}=R\cap\left(\bigcap_{P}(I^{m}R_{P})\right).$$

This can reduce to a much cleaner definition if more information about I is available.

Question

How do different symbolic powers of an ideal compare?

Answer: We have $I^{(r)} \subseteq I^{(t)}$ if and only if $r \ge t$.

Question

What is the relationship between I^r and $I^{(m)}$?

Question

What is the relationship between I^r and $I^{(m)}$?

Answer: It depends on *I*.

Question

What is the relationship between I^r and $I^{(m)}$?

Answer: It depends on *I*.

A partial answer: $I^r \subseteq I^{(m)}$ if and only if $r \ge m$.

Question

What is the relationship between I^r and $I^{(m)}$?

Answer: It depends on *I*.

A partial answer: $I^r \subseteq I^{(m)}$ if and only if $r \ge m$.

A (further) partial answer: $I^{(m)} \subseteq I^r$ implies $m \ge r$.

Question

What is the relationship between I^r and $I^{(m)}$?

Answer: It depends on *I*.

A partial answer: $I^r \subseteq I^{(m)}$ if and only if $r \ge m$.

A (further) partial answer: $I^{(m)} \subseteq I^r$ implies $m \ge r$.

Before elaborating, we ask: what can symbolic powers look like?

Example - Symbolic Powers of Edge Ideals

Introduced by R. Villareal in the 1990s

Let $V = \{x_1, x_2, \dots, x_n\}$ be a set of variables and consider the (simple) graph G = (V, E), where E contains 2-element sets comprised of pairs of the variables (so, e.g., $\{x_1, x_2\} \in E$ but $\{x_1, x_2, x_3\}$, $\{x_1^2\} \notin E$).

Example – Symbolic Powers of Edge Ideals

Introduced by R. Villareal in the 1990s

Let $V = \{x_1, x_2, \dots, x_n\}$ be a set of variables and consider the (simple) graph G = (V, E), where E contains 2-element sets comprised of pairs of the variables (so, e.g., $\{x_1, x_2\} \in E$ but $\{x_1, x_2, x_3\}$, $\{x_1^2\} \notin E$).

Definition

Given G = (V, E) as above, the edge ideal of G is

$$I(G) = (x_i x_i : \{x_i, x_i\} \in E) \subseteq k[x_1, x_2, \dots, x_n].$$

Example – Symbolic Powers of Edge Ideals

Introduced by R. Villareal in the 1990s

Let $V = \{x_1, x_2, \dots, x_n\}$ be a set of variables and consider the (simple) graph G = (V, E), where E contains 2-element sets comprised of pairs of the variables (so, e.g., $\{x_1, x_2\} \in E$ but $\{x_1, x_2, x_3\}$, $\{x_1^2\} \notin E$).

Definition

Given
$$G = (V, E)$$
 as above, the edge ideal of G is $I(G) = (x_i x_j : \{x_i, x_j\} \in E) \subseteq k[x_1, x_2, \dots, x_n].$

Fact: For an edge ideal I, $I^{(m)} = \bigcap_{i} P_{i}^{m}$, where the P_{i} correspond to minimal vertex covers of G.

$$I = I(C_5)$$

$$I = I(C_5)$$

Here, the ring is $R = k[x_0, x_1, x_2, x_3, x_4]$, and the ideals corresponding to minimal vertex covers are $P_1 = (x_0, x_1, x_3)$, $P_2 = (x_0, x_2, x_3)$, $P_3 = (x_0, x_2, x_4)$, $P_4 = (x_1, x_2, x_4)$, $P_5 = (x_1, x_3, x_4)$. Then

$$I = I(C_5)$$

Here, the ring is $R = k[x_0, x_1, x_2, x_3, x_4]$, and the ideals corresponding to minimal vertex covers are $P_1 = (x_0, x_1, x_3)$, $P_2 = (x_0, x_2, x_3)$, $P_3 = (x_0, x_2, x_4)$, $P_4 = (x_1, x_2, x_4)$, $P_5 = (x_1, x_3, x_4)$. Then $I^{(2)} = P_1^2 \cap P_2^2 \cap P_3^2 \cap P_4^2 \cap P_5^2$ $= (x_0^2 x_1^2, x_0 x_1^2 x_2, x_1^2 x_2^2, x_0 x_1 x_2 x_3, x_1 x_2^2 x_3, x_2^2 x_3^2, x_0^2 x_1 x_4, x_0 x_1 x_2 x_4, x_0 x_1 x_3 x_4, x_0 x_2 x_3 x_4, x_1 x_2 x_3 x_4, x_2 x_3^2 x_4, x_0^2 x_4^2, x_0 x_3 x_4^2, x_3^2 x_4^2)$ $= I^2$

$$I = I(C_5)$$

Here, the ring is $R = k[x_0, x_1, x_2, x_3, x_4]$, and the ideals corresponding to minimal vertex covers are $P_1 = (x_0, x_1, x_3)$, $P_2 = (x_0, x_2, x_3)$, $P_3 = (x_0, x_2, x_4)$, $P_4 = (x_1, x_2, x_4)$, $P_5 = (x_1, x_3, x_4)$. Then $I^{(2)} = P_1^2 \cap P_2^2 \cap P_3^2 \cap P_4^2 \cap P_5^2$ $= (x_0^2 x_1^2, x_0 x_1^2 x_2, x_1^2 x_2^2, x_0 x_1 x_2 x_3, x_1 x_2^2 x_3, x_2^2 x_3^2, x_0^2 x_1 x_4, x_0 x_1 x_2 x_4, x_0 x_1 x_3 x_4, x_0 x_2 x_3 x_4, x_1 x_2 x_3 x_4, x_2 x_3^2 x_4, x_0^2 x_4^2, x_0 x_3 x_4^2, x_3^2 x_4^2)$ $= I^2$

But $I^{(t)} \neq I^t$ for all t > 2.

Equality of the powers

Theorem (Simis-Vasconcelos-Villareal (1994))

Given an edge ideal $I = I(G) \subseteq k[x_1, x_2, ..., x_n]$ as above, the following are equivalent.

- (i) $I^{(m)} = I^m$ for all $m \ge 1$.
- (ii) The graph G is bipartite.

Example – Points in \mathbb{P}^N

Let $p_1, \ldots, p_r \in \mathbb{P}^N_{\mathbb{C}}$ be a finite set of distinct points.

Example – Points in \mathbb{P}^N

Let $p_1, \ldots, p_r \in \mathbb{P}^N_{\mathbb{C}}$ be a finite set of distinct points.

Define $I(p_j) \subseteq k[x_0, x_1, \dots, x_N]$ to be the ideal generated by all homogeneous polynomials (forms) which are 0 at p_j .

Example – Points in \mathbb{P}^N

Let $p_1, \ldots, p_r \in \mathbb{P}^N_{\mathbb{C}}$ be a finite set of distinct points.

Define $I(p_j) \subseteq k[x_0, x_1, \dots, x_N]$ to be the ideal generated by all homogeneous polynomials (forms) which are 0 at p_j .

Then $I = \bigcap_j I(p_j)$ is the ideal generated by all forms vanishing at each p_j .

Example – Points in \mathbb{P}^N

Let $p_1, \ldots, p_r \in \mathbb{P}^N_{\mathbb{C}}$ be a finite set of distinct points.

Define $I(p_j) \subseteq k[x_0, x_1, \dots, x_N]$ to be the ideal generated by all homogeneous polynomials (forms) which are 0 at p_j .

Then $I = \bigcap_j I(p_j)$ is the ideal generated by all forms vanishing at each p_j .

Theorem (Nagata, Zariski)

Let
$$Z = \{p_1, \dots, p_r\} \subseteq \mathbb{P}_C^N$$
. Given $I = I(Z) = \cap_j I(p_j)$,

$$I^{(m)} = \bigcap_{j=1}^{r} I(p_j)^m$$

is the ideal of all forms vanishing to order at least m at each of the p_j 's.

An example of points in \mathbb{P}^2

An example of points in \mathbb{P}^2

Given I = I(Z), $F_1F_2F_3F_4 \in I^{(2)}$ but no product of 3 of the F_i 's are in $I^{(2)}$.

Points in \mathbb{P}^2

Let $Z \subseteq \mathbb{P}^2$ be a finite set of points.

Question

If I = I(Z) is generated by 3 or more forms, is it ever true that $I^{(2)} = I^2$?

Points in \mathbb{P}^2

Let $Z \subseteq \mathbb{P}^2$ be a finite set of points.

Question

If I = I(Z) is generated by 3 or more forms, is it ever true that $I^{(2)} = I^2$?

The answer seems to be no.

Symbolic power summary

Our examples:

Symbolic power summary

Our examples:

• If I = I(G) is the edge ideal of a graph G, $I^{(m)} = \bigcap_i P_i^m$, where the P_i 's are generated by the variables corresponding to minimal vertex covers of G.

Symbolic power summary

Our examples:

- If I = I(G) is the edge ideal of a graph G, $I^{(m)} = \bigcap_i P_i^m$, where the P_i 's are generated by the variables corresponding to minimal vertex covers of G.
- If I = I(Z) is the ideal of a finite set of points in \mathbb{P}^N , $I^{(m)}$ is the ideal generated by all forms vanishing to order at least m at each point of Z.

Our problems

Recall:

Our problems

Recall:

Problem (Containment Problem)

Determine all $m, r \ge 1$ such that $I^{(m)} \subseteq I^r$.

factorization

Our problems

Recall:

Problem (Containment Problem)

Determine all $m, r \ge 1$ such that $I^{(m)} \subseteq I^r$.

factorization

Problem

Compute invariants related to the containment $I^{(m)} \subseteq I^r$.

The Containment Problem: a general solution

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

Let k be an algebraically closed field of arbitrary characteristic and suppose $I \subseteq k[x_0, x_1, \dots, x_N]$ is a nontrivial homogeneous ideal. Then $I^{(m)} \subset I^r$ whenever m > Nr.

The Containment Problem: a general solution

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

Let k be an algebraically closed field of arbitrary characteristic and suppose $I \subseteq k[x_0, x_1, \dots, x_N]$ is a nontrivial homogeneous ideal. Then $I^{(m)} \subset I^r$ whenever m > Nr.

This is sharp for a general I.

The Containment Problem: a general solution

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

Let k be an algebraically closed field of arbitrary characteristic and suppose $I \subseteq k[x_0, x_1, \dots, x_N]$ is a nontrivial homogeneous ideal. Then $I^{(m)} \subset I^r$ whenever m > Nr.

This is sharp for a general I.

Question

Given additional information about I. can m be made smaller?

Yes!

Example

If I = I(G) with G bipartite on N vertices, $I^{(m)} \subseteq I^r$ if and only if $m \ge r$.

Yes!

Example

If I = I(G) with G bipartite on N vertices, $I^{(m)} \subseteq I^r$ if and only if $m \ge r$.

Theorem (-, 2013)

If I = I(Z) is the set of n + 1 almost collinear points in \mathbb{P}^2 (see figure for n + 1 = 4), then $I^{(m)} \subseteq I^r$ if and only if

$$m > \frac{n^2r - n}{n^2 - n + 1}.$$

In 2007, Bocci and Harbourne introduced the following asymptotic invariant of an ideal.

In 2007, Bocci and Harbourne introduced the following asymptotic invariant of an ideal.

Definition

Let $I \subseteq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define the resurgence of I to be

$$\rho(I) = \sup \Big\{ m/r : I^{(m)} \not\subseteq I^r \Big\}.$$

In 2007, Bocci and Harbourne introduced the following asymptotic invariant of an ideal.

Definition

Let $I \subseteq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define the resurgence of I to be

$$\rho(I) = \sup \Big\{ m/r : I^{(m)} \not\subseteq I^r \Big\}.$$

If $m/r > \rho(I)$, then $I^{(m)} \subseteq I^r$.

In 2007, Bocci and Harbourne introduced the following asymptotic invariant of an ideal.

Definition

Let $I \subseteq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define the resurgence of I to be

$$\rho(I) = \sup \Big\{ m/r : I^{(m)} \not\subseteq I^r \Big\}.$$

If $m/r > \rho(I)$, then $I^{(m)} \subseteq I^r$.

Problem (Asymptotic Containment Problem)

Compute $\rho(I)$.

Computing $\rho(I)$

• In principal, computing $\rho(I)$ is very difficult, though for $I \subseteq k[x_0, x_1, \dots, x_N]$, we know $1 \le \rho(I) \le N$.

Computing $\rho(I)$

- In principal, computing $\rho(I)$ is very difficult, though for $I \subseteq k[x_0, x_1, \dots, x_N]$, we know $1 \le \rho(I) \le N$.
- There are not many known values of $\rho(I)$ (though for n+1 almost collinear points, $\rho(I) = \frac{n^2}{n^2 n + 1}$).

Computing $\rho(I)$

- In principal, computing $\rho(I)$ is very difficult, though for $I \subseteq k[x_0, x_1, \dots, x_N]$, we know $1 \le \rho(I) \le N$.
- There are not many known values of $\rho(I)$ (though for n+1 almost collinear points, $\rho(I) = \frac{n^2}{n^2 n + 1}$).
- Easier problem: compute invariants which contribute to (better) bounds for $\rho(I)$.

 α

Of importance in this line of questioning is the initial degree.

Definition

Let $J \subsetneq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define

$$\alpha(J) = \min \{ d : \text{ there exists } 0 \neq f \in J, \deg(f) = d \}.$$

 α

Of importance in this line of questioning is the initial degree.

Definition

Let $J \subsetneq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define

$$\alpha(J) = \min \{ d : \text{ there exists } 0 \neq f \in J, \deg(f) = d \}.$$

Note: if $\alpha(I^{(m)}) < \alpha(I^r)$ then $I^{(m)} \not\subseteq I^r$.

Of importance in this line of questioning is the initial degree.

Definition

Let $J \subsetneq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define

$$\alpha(J) = \min \{ d : \text{ there exists } 0 \neq f \in J, \deg(f) = d \}.$$

Note: if $\alpha(I^{(m)}) < \alpha(I^r)$ then $I^{(m)} \not\subseteq I^r$.

Example

Given an edge ideal I = I(G), $\alpha(I) = 2$ and $\alpha(I^r) = r\alpha(I)$. Computing $\alpha(I^{(m)})$ is more delicate.

 α

Of importance in this line of questioning is the initial degree.

Definition

Let $J \subsetneq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define

$$\alpha(J) = \min \{ d : \text{ there exists } 0 \neq f \in J, \deg(f) = d \}.$$

Note: if $\alpha(I^{(m)}) < \alpha(I^r)$ then $I^{(m)} \not\subseteq I^r$.

Example

Given an edge ideal I = I(G), $\alpha(I) = 2$ and $\alpha(I^r) = r\alpha(I)$. Computing $\alpha(I^{(m)})$ is more delicate.

Given I, the edge ideal of C_{2n+1} ,

$$\alpha(I^{(m)}) = 2m - \lfloor \frac{m}{n+1} \rfloor$$

Definition

The asymptotic initial degree (also called the Waldschmidt constant), $\hat{\alpha}(I)$, is the limit

$$\hat{\alpha}(I) = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m}.$$

Definition

The asymptotic initial degree (also called the Waldschmidt constant), $\hat{\alpha}(I)$, is the limit

$$\hat{\alpha}(I) = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m}.$$

This limit was introduced in the 1970s by Waldschmidt, who was studying arithmetic properties of functions of several complex variables. It is an asymptotic version of α . It is a fact that this limit always exists.

Definition

The asymptotic initial degree (also called the Waldschmidt constant), $\hat{\alpha}(I)$, is the limit

$$\hat{\alpha}(I) = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m}.$$

This limit was introduced in the 1970s by Waldschmidt, who was studying arithmetic properties of functions of several complex variables. It is an asymptotic version of α . It is a fact that this limit always exists.

Theorem (Bocci-Harbourne, 2007)

Given a nonzero homogeneous $I \subsetneq k[x_0, x_1, \dots, x_N]$,

$$\frac{\alpha(I^m)}{\alpha(I^{(m)})} \le \frac{\alpha(I)}{\hat{\alpha}(I)} \le \rho(I).$$

Results for edge ideals

Theorem (Bocci, J-, van Tuyl)

Let $I \subseteq k[x_1, x_2, \dots, x_{2n+1}]$ be the edge ideal of the cycle C_{2n+1} . Then:

- $\hat{\alpha}(I) = \frac{2n+1}{n+1};$
- 3 $I^{(t)} \nsubseteq I^t$ for all t > n.

Results for edge ideals

Theorem (Bocci, J-, van Tuyl)

Let $I \subseteq k[x_1, x_2, ..., x_{2n+1}]$ be the edge ideal of the cycle C_{2n+1} . Then:

- $\hat{\alpha}(I) = \frac{2n+1}{n+1};$
- 3 $I^{(t)} \nsubseteq I^t$ for all t > n.

Conjecture: $I^{(t)} = I^t$ for all $1 \le t \le n$.

Results for edge ideals

Theorem (Bocci, J-, van Tuyl)

Let $I \subseteq k[x_1, x_2, \dots, x_{2n+1}]$ be the edge ideal of the cycle C_{2n+1} . Then:

- **2** $\hat{\alpha}(I) = \frac{2n+1}{n+1};$

Conjecture: $I^{(t)} = I^t$ for all $1 \le t \le n$.

Theorem (Bocci, J–)

Let G_1 and G_2 be graphs with disjoint vertex sets $V_1 = \{x_1, \dots, x_n\}$ and $V_2 = \{y_1, \dots, y_n\}$, respectively. Then

$$I(G_1 \cup G_2)^{(m)} = \sum_{i=0}^m I(G_1)^{(i)} I(G_2)^{(m-i)}.$$

Problem

Compute $\rho(I)$ and $\hat{\alpha}(I)$ for additional ideals.

Problem

Compute $\rho(I)$ and $\hat{\alpha}(I)$ for additional ideals. Connections to graph theory for edge ideals?

Problem

Compute $\rho(I)$ and $\hat{\alpha}(I)$ for additional ideals. Connections to graph theory for edge ideals?

Conjecture (Bocci, J-)

Let G_1 and G_2 be graphs with disjoint vertex sets $V_1=\{x_1,\ldots,x_n\}$ and $V_2=\{y_1,\ldots,y_n\}$, respectively. Then

$$\hat{\alpha}(I(G_1 \cup G_2)) = \min \left\{ \hat{\alpha}(I(G_1)), \hat{\alpha}(I(G_2)) \right\}.$$

Problem

Compute $\rho(I)$ and $\hat{\alpha}(I)$ for additional ideals. Connections to graph theory for edge ideals?

Conjecture (Bocci, J-)

Let G_1 and G_2 be graphs with disjoint vertex sets $V_1=\{x_1,\ldots,x_n\}$ and $V_2=\{y_1,\ldots,y_n\}$, respectively. Then

$$\hat{\alpha}(I(G_1 \cup G_2)) = \min \left\{ \hat{\alpha}(I(G_1)), \hat{\alpha}(I(G_2)) \right\}.$$

What is $\rho(I(G_1 \cup G_2))$?

Thanks

Thank you!