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Ideals and their powers

Our situation

Let k be an algebraically closed field (e.g., k = C).

We will primarily consider homogeneous ideals I ⊆ R = k[x0, x1, . . . , xN ].
[The word form is interchangeable with homogeneous polynomial.]

Example

In C[X ,Y ,Z ] such an ideal is I = (XZ ,YZ ,X 3 − 3X 2Y − XY 2).
A non-example is J = (X 2 − Y ,Z 2).
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Ideals and their powers

Ordinary Powers

Given a ideals I , J ⊆ R, we may multiply ideals.

Recall:

IJ = (FG : F ∈ I , G ∈ J).

We may extend this to (ordinary) powers:

I r = (Gi1Gi2 · · ·Gir : Gi ∈ I )

Example

Let I = (X ,Y ) ⊆ C[X ,Y ,Z ]. Then I 2 = (X 2,XY ,Y 2),
I 3 = (X 3,X 2Y ,XY 2,Y 3), etc.

Question

How do different (ordinary) powers of an ideal compare?

Answer: We have I r ⊆ I t if and only if r ≥ t. ideal gets (strictly) smaller
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Ideals and their powers

Symbolic Powers

Definition

Given an ideal I ⊆ R, we define the m-th symbolic power of I to be

I (m) = R ∩

(∩
P

(ImRP)

)
.

This can reduce to a much cleaner definition if more information about I is
available.

Question

How do different symbolic powers of an ideal compare?

Answer: We have I (r) ⊆ I (t) if and only if r ≥ t.
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Ideals and their powers

Ordinary vs. Symbolic

Question

What is the relationship between I r and I (m)?

Answer: It depends on I .

A partial answer: I r ⊆ I (m) if and only if r ≥ m.

A (further) partial answer: I (m) ⊆ I r implies m ≥ r .

Before elaborating, we ask: what can symbolic powers look like?
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Ideals and their powers

Example – Symbolic Powers of Edge Ideals
Introduced by R. Villareal in the 1990s

Let V = {x1, x2, . . . , xn} be a set of variables and consider the (simple)
graph G = (V ,E ), where E contains 2-element sets comprised of pairs of
the variables (so, e.g., {x1, x2} ∈ E but {x1, x2, x3} ,

{
x21
}
̸∈ E ).

Definition

Given G = (V ,E ) as above, the edge ideal of G is
I (G ) = (xixj : {xi , xj} ∈ E ) ⊆ k[x1, x2, . . . , xn].

Fact: For an edge ideal I , I (m) =
∩
i
Pm
i , where the Pi correspond to

minimal vertex covers of G .
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Ideals and their powers

I = I (C5)

x0

x1x4

x3 x2

Here, the ring is R = k[x0, x1, x2, x3, x4], and the ideals corresponding to
minimal vertex covers are P1 = (x0, x1, x3), P2 = (x0, x2, x3),
P3 = (x0, x2, x4), P4 = (x1, x2, x4), P5 = (x1, x3, x4). Then

I (2) = P2
1 ∩ P2

2 ∩ P2
3 ∩ P2

4 ∩ P2
5

= (x20x
2
1 , x0x

2
1x2, x

2
1x

2
2 , x0x1x2x3, x1x

2
2x3, x

2
2x

2
3 , x

2
0x1x4, x0x1x2x4,

x0x1x3x4, x0x2x3x4, x1x2x3x4, x2x
2
3x4, x

2
0x

2
4 , x0x3x

2
4 , x

2
3x

2
4 )

= I 2.

But I (t) ̸= I t for all t > 2.
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Ideals and their powers

Equality of the powers

Theorem (Simis-Vasconcelos-Villareal (1994))

Given an edge ideal I = I (G ) ⊆ k[x1, x2, . . . , xn] as above, the following
are equivalent.

(i) I (m) = Im for all m ≥ 1.

(ii) The graph G is bipartite.

Mike Janssen (Dordt College) March 5, 2015 10 / 1



Ideals and their powers

Example – Points in PN

Let p1, . . . , pr ∈ PN
C be a finite set of distinct points.

Define I (pj) ⊆ k[x0, x1, . . . , xN ] to be the ideal generated by all
homogeneous polynomials (forms) which are 0 at pj .

Then I = ∩j I (pj) is the ideal generated by all forms vanishing at each pj .

Theorem (Nagata, Zariski)

Let Z = {p1, . . . , pr} ⊆ PN
C . Given I = I (Z ) = ∩j I (pj),

I (m) =
r∩

j=1

I (pj)
m

is the ideal of all forms vanishing to order at least m at each of the pj ’s.
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Ideals and their powers

An example of points in P2

F1 = 0

F2 = 0F3 = 0

F4 = 0

Given I = I (Z ), F1F2F3F4 ∈ I (2) but no product of 3 of the Fi ’s are in I (2).

Mike Janssen (Dordt College) March 5, 2015 12 / 1
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Ideals and their powers

Points in P2

Let Z ⊆ P2 be a finite set of points.

Question

If I = I (Z ) is generated by 3 or more forms, is it ever true that I (2) = I 2?

The answer seems to be no.
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Ideals and their powers

Symbolic power summary

Our examples:

If I = I (G ) is the edge ideal of a graph G , I (m) = ∩iP
m
i , where the

Pi ’s are generated by the variables corresponding to minimal vertex
covers of G .

If I = I (Z ) is the ideal of a finite set of points in PN , I (m) is the ideal
generated by all forms vanishing to order at least m at each point of
Z .
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Questions of study

Our problems

Recall:

Problem (Containment Problem)

Determine all m, r ≥ 1 such that I (m) ⊆ I r . factorization

Problem

Compute invariants related to the containment I (m) ⊆ I r .
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Questions of study

The Containment Problem: a general solution

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

Let k be an algebraically closed field of arbitrary characteristic and
suppose I ⊆ k[x0, x1, . . . , xN ] is a nontrivial homogeneous ideal. Then
I (m) ⊆ I r whenever m ≥ Nr.

This is sharp for a general I .

Question

Given additional information about I , can m be made smaller?
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Questions of study

Yes!

Example

If I = I (G ) with G bipartite on N vertices, I (m) ⊆ I r if and only if m ≥ r .

Theorem (–, 2013)

If I = I (Z ) is the set of n + 1 almost collinear points in P2 (see figure for
n + 1 = 4), then I (m) ⊆ I r if and only if

m >
n2r − n

n2 − n + 1
.
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Questions of study

An asymptotic approach

In 2007, Bocci and Harbourne introduced the following asymptotic
invariant of an ideal.

Definition

Let I ⊆ k[x0, x1, . . . , xN ] be a nonzero homogeneous ideal. Define the
resurgence of I to be

ρ(I ) = sup
{
m/r : I (m) ̸⊆ I r

}
.

If m/r > ρ(I ), then I (m) ⊆ I r .

Problem (Asymptotic Containment Problem)

Compute ρ(I ).
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Questions of study

Computing ρ(I )

In principal, computing ρ(I ) is very difficult, though for
I ⊆ k[x0, x1, . . . , xN ], we know 1 ≤ ρ(I ) ≤ N.

There are not many known values of ρ(I ) (though for n + 1 almost

collinear points, ρ(I ) = n2

n2−n+1
).

Easier problem: compute invariants which contribute to (better)
bounds for ρ(I ).
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Questions of study

α

Of importance in this line of questioning is the initial degree.

Definition

Let J ⊊ k[x0, x1, . . . , xN ] be a nonzero homogeneous ideal. Define

α(J) = min {d : there exists 0 ̸= f ∈ J, deg(f ) = d}.

Note: if α(I (m)) < α(I r ) then I (m) ̸⊆ I r .

Example

Given an edge ideal I = I (G ), α(I ) = 2 and α(I r ) = rα(I ). Computing
α(I (m)) is more delicate.

Given I , the edge ideal of C2n+1,

α(I (m)) = 2m − ⌊ m

n + 1
⌋
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Questions of study

α̂

Definition

The asymptotic initial degree (also called the Waldschmidt constant),
α̂(I ), is the limit

α̂(I ) = lim
m→∞

α(I (m))

m
.

This limit was introduced in the 1970s by Waldschmidt, who was studying
arithmetic properties of functions of several complex variables. It is an
asymptotic version of α. It is a fact that this limit always exists.

Theorem (Bocci-Harbourne, 2007)

Given a nonzero homogeneous I ⊊ k[x0, x1, . . . , xN ],

α(Im)

α(I (m))
≤ α(I )

α̂(I )
≤ ρ(I ).
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Recent results

Results for edge ideals

Theorem (Bocci, J–, van Tuyl)

Let I ⊆ k[x1, x2, . . . , x2n+1] be the edge ideal of the cycle C2n+1. Then:

1 α(I (m)) = 2m − ⌊ m
n+1⌋;

2 α̂(I ) = 2n+1
n+1 ; *

3 I (t) ̸⊆ I t for all t > n. *

Conjecture: I (t) = I t for all 1 ≤ t ≤ n.

Theorem (Bocci, J–)

Let G1 and G2 be graphs with disjoint vertex sets V1 = {x1, . . . , xn} and
V2 = {y1, . . . , yn}, respectively. Then

I (G1 ∪ G2)
(m) =

m∑
i=0

I (G1)
(i)I (G2)

(m−i).
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Recent results

Future work

Problem

Compute ρ(I ) and α̂(I ) for additional ideals.

Connections to graph theory
for edge ideals?

Conjecture (Bocci, J–)

Let G1 and G2 be graphs with disjoint vertex sets V1 = {x1, . . . , xn} and
V2 = {y1, . . . , yn}, respectively. Then

α̂(I (G1 ∪ G2)) = min {α̂(I (G1)), α̂(I (G2))} .

What is ρ(I (G1 ∪ G2))?
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Recent results

Thanks

Thank you!
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