On the fattening of lines in \mathbb{P}^3

Mike Janssen

Dordt College

Oberwolfach Mini-Workshop

February 15-21 2015

Permit me a short review

Let k be an algebraically closed field of arbitrary characteristic, and Z a finite subset of points in \mathbb{P}_k^N .

Permit me a short review

Let k be an algebraically closed field of arbitrary characteristic, and Z a finite subset of points in \mathbb{P}_k^N .

Much is known about the Hilbert function of Z; less is known about the homogeneous fat point scheme 2Z.

Permit me a short review

Let k be an algebraically closed field of arbitrary characteristic, and Z a finite subset of points in \mathbb{P}_k^N .

Much is known about the Hilbert function of Z; less is known about the homogeneous fat point scheme 2Z.

Related to this and other numerical properties of ideals is the initial degree, $\alpha(I) = \min \{d : I_d \neq 0\}$.

Permit me a short review

Let k be an algebraically closed field of arbitrary characteristic, and Z a finite subset of points in \mathbb{P}_k^N .

Much is known about the Hilbert function of Z; less is known about the homogeneous fat point scheme 2Z.

Related to this and other numerical properties of ideals is the initial degree, $\alpha(I) = \min \{d : I_d \neq 0\}$.

Of recent interest is the initial sequence $(\alpha(I^{(m)}))_{m\geq 1}$.

Permit me a short review

Let k be an algebraically closed field of arbitrary characteristic, and Z a finite subset of points in \mathbb{P}_k^N .

Much is known about the Hilbert function of Z; less is known about the homogeneous fat point scheme 2Z.

Related to this and other numerical properties of ideals is the initial degree, $\alpha(I) = \min \{d : I_d \neq 0\}$.

Of recent interest is the initial sequence $(\alpha(I^{(m)}))_{m\geq 1}$. We will write $\alpha(mZ) := \alpha(I(Z)^{(m)})$.

Bocci-Chiantini postulate values for the initial difference $t = \alpha(2Z) - \alpha(Z)$ and classify the geometry of the underlying points set Z.

Bocci-Chiantini postulate values for the initial difference $t = \alpha(2Z) - \alpha(Z)$ and classify the geometry of the underlying points set Z.

Specifically, when t = 1 and $Z \subseteq \mathbb{P}^2$, they use Bézout's Theorem to show that Z is either collinear or a star configuration.

Bocci-Chiantini postulate values for the initial difference $t = \alpha(2Z) - \alpha(Z)$ and classify the geometry of the underlying points set Z.

Specifically, when t=1 and $Z\subseteq \mathbb{P}^2$, they use Bézout's Theorem to show that Z is either collinear or a star configuration.

Dumnicki-Szemberg-Tutaj-Gasinska and Bauer-Szemberg investigate related questions for larger symbolic powers and points in higher-dimensional projective space.

Bocci-Chiantini postulate values for the initial difference $t = \alpha(2Z) - \alpha(Z)$ and classify the geometry of the underlying points set Z.

Specifically, when t=1 and $Z\subseteq \mathbb{P}^2$, they use Bézout's Theorem to show that Z is either collinear or a star configuration.

Dumnicki-Szemberg-Tutaj-Gasinska and Bauer-Szemberg investigate related questions for larger symbolic powers and points in higher-dimensional projective space.

Similar questions have been explored for points in $\mathbb{P}^1 \times \mathbb{P}^1$.

Bocci-Chiantini postulate values for the initial difference $t = \alpha(2Z) - \alpha(Z)$ and classify the geometry of the underlying points set Z.

Specifically, when t=1 and $Z\subseteq \mathbb{P}^2$, they use Bézout's Theorem to show that Z is either collinear or a star configuration.

Dumnicki-Szemberg-Tutaj-Gasinska and Bauer-Szemberg investigate related questions for larger symbolic powers and points in higher-dimensional projective space.

Similar questions have been explored for points in $\mathbb{P}^1 \times \mathbb{P}^1$.

Today we examine the situation for lines in \mathbb{P}^3 .

Stars to Pseudostars

Definition

Let $\mathcal{H} = \{H_1, \dots, H_s\}$ be a collection of $s \geq 1$ distinct hyperplanes in \mathbb{P}^N . We assume that the intersection of any j of the hyperplanes is either empty or has codimension j. For any $1 \leq c \leq \min(s, N)$ define:

$$V_c(\mathcal{H}, \mathbb{P}^N) = \bigcup_{1 \leq i_1 < \dots < i_c \leq s} H_{i_1} \cap \dots \cap H_{i_c}.$$

This union is referred to as a codimension c star configuration in \mathbb{P}^N .

Stars to Pseudostars

Definition

Let $\mathcal{H} = \{H_1, \dots, H_s\}$ be a collection of $s \geq 1$ distinct hyperplanes in \mathbb{P}^N . We assume that the intersection of any j of the hyperplanes is either empty or has codimension j. For any $1 \leq c \leq \min(s, N)$ define:

$$V_c(\mathcal{H}, \mathbb{P}^N) = \bigcup_{1 \leq i_1 < \dots < i_c \leq s} H_{i_1} \cap \dots \cap H_{i_c}.$$

This union is referred to as a codimension c star configuration in $\mathbb{P}^N.$

We relax the definition so that the intersection of $j \ge 4$ hyperplanes in \mathbb{P}^3 may equal a point and call these new configurations *pseudostars*.

In which four planes meet at a point.

ACMness

We note the following useful property of ACM subschemes of positive dimension:

Proposition

Let $X \subseteq \mathbb{P}^N$ be an arithmetically Cohen-Macaulay scheme of dimension at least 1, and suppose $H \subseteq \mathbb{P}^N$ is a general hyperplane. Let $X \cap H$ denote the general hyperplane section of X, $S = k[\mathbb{P}^N]$, and $R = S/I(H) \cong k[\mathbb{P}^{N-1}]$. Then the Hilbert function of $R/I(X \cap H)$ is given by

$$H(R/I(X \cap H), t) = H(S/I(X), t) - H(S/I(X), t - 1).$$

ACMness

We note the following useful property of ACM subschemes of positive dimension:

Proposition

Let $X \subseteq \mathbb{P}^N$ be an arithmetically Cohen-Macaulay scheme of dimension at least 1, and suppose $H \subseteq \mathbb{P}^N$ is a general hyperplane. Let $X \cap H$ denote the general hyperplane section of X, $S = k[\mathbb{P}^N]$, and $R = S/I(H) \cong k[\mathbb{P}^{N-1}]$. Then the Hilbert function of $R/I(X \cap H)$ is given by

$$H(R/I(X \cap H), t) = H(S/I(X), t) - H(S/I(X), t - 1).$$

Consequence: if $X \subseteq \mathbb{P}^N$ is ACM of dimension at least 1, and H is a general hyperplane in \mathbb{P}^N , then $\alpha(X \cap H) = \alpha(X)$.

Though not explicitly used by Bocci-Chiantini, all finite subsets of points of \mathbb{P}^N are ACM.

Though not explicitly used by Bocci-Chiantini, all finite subsets of points of \mathbb{P}^N are ACM.

Facts:

• Coplanar lines and their symbolic powers are ACM.

Though not explicitly used by Bocci-Chiantini, all finite subsets of points of \mathbb{P}^N are ACM.

Facts:

- Coplanar lines and their symbolic powers are ACM.
- Star configurations and their symbolic powers are ACM.

Though not explicitly used by Bocci-Chiantini, all finite subsets of points of \mathbb{P}^N are ACM.

Facts:

- Coplanar lines and their symbolic powers are ACM.
- Star configurations and their symbolic powers are ACM.
- Pseudostars and their symbolic powers are ACM.

α for pseudostars and general hyperplane sections

Lemma

Let \mathbb{L} be a pseudo-star in \mathbb{P}^3 formed by the pairwise intersections of $d \geq 3$ planes $\{H_1, \ldots, H_d\}$. Then $\alpha(\mathbb{L}) = d - 1$ and $\alpha(2\mathbb{L}) = d$.

α for pseudostars and general hyperplane sections

Lemma

Let \mathbb{L} be a pseudo-star in \mathbb{P}^3 formed by the pairwise intersections of $d \geq 3$ planes $\{H_1, \ldots, H_d\}$. Then $\alpha(\mathbb{L}) = d - 1$ and $\alpha(2\mathbb{L}) = d$.

Lemma

If $d \ge 3$ lines in \mathbb{P}^3 meet a general hyperplane in collinear points, the lines are coplanar.

Theorem (-)

Let $\mathbb{L} \subseteq \mathbb{P}^3$ be a union of lines $\ell_1, \ell_2, \dots, \ell_s$. TFAE:

- (a) \mathbb{L} is ACM of type with $d = \alpha(2\mathbb{L}) = \alpha(\mathbb{L}) + 1$ for some d > 1.
- (b) \mathbb{L} is either a pseudostar or coplanar.

Theorem (–)

Let $\mathbb{L} \subseteq \mathbb{P}^3$ be a union of lines $\ell_1, \ell_2, \dots, \ell_s$. TFAE:

- (a) \mathbb{L} is ACM of type with $d = \alpha(2\mathbb{L}) = \alpha(\mathbb{L}) + 1$ for some d > 1.
- (b) \mathbb{L} is either a pseudostar or coplanar.

Note: it is convenient to assume $s \ge 4$ in both directions ($1 \le s \le 3$ can be treated in an ad hoc fashion).

Theorem (-)

Let $\mathbb{L} \subseteq \mathbb{P}^3$ be a union of lines $\ell_1, \ell_2, \dots, \ell_s$. TFAE:

- (a) \mathbb{L} is ACM of type with $d = \alpha(2\mathbb{L}) = \alpha(\mathbb{L}) + 1$ for some d > 1.
- (b) \mathbb{L} is either a pseudostar or coplanar.

Note: it is convenient to assume $s \ge 4$ in both directions ($1 \le s \le 3$ can be treated in an ad hoc fashion).

Sketch of (b) \Rightarrow (a): If \mathbb{L} is coplanar, $\alpha(\mathbb{L}) = 1$ and $\alpha(2\mathbb{L}) = 2$.

Theorem (-)

Let $\mathbb{L} \subseteq \mathbb{P}^3$ be a union of lines $\ell_1, \ell_2, \dots, \ell_s$. TFAE:

- (a) \mathbb{L} is ACM of type with $d = \alpha(2\mathbb{L}) = \alpha(\mathbb{L}) + 1$ for some d > 1.
- (b) \mathbb{L} is either a pseudostar or coplanar.

Note: it is convenient to assume $s \ge 4$ in both directions ($1 \le s \le 3$ can be treated in an ad hoc fashion).

Sketch of (b) \Rightarrow (a): If $\mathbb L$ is coplanar, $\alpha(\mathbb L)=1$ and $\alpha(2\mathbb L)=2$. If $\mathbb L$ is a pseudostar formed by the pairwise intersection of d planes, then $\alpha(2\mathbb L)=d$ and $\alpha(\mathbb L)=d-1$ by previous slides.

Sketch of (a) \Rightarrow (b): Since α is preserved by general hyperplane sections, we have $\alpha(2(\mathbb{L} \cap H)) = d$ and $\alpha(\mathbb{L} \cap H) = d - 1$, so is a star or collinear:

- If $\mathbb{L} \cap H$ is collinear, \mathbb{L} is coplanar.
- If a $\mathbb{L} \cap H$ is a star, consider an example.

$$\mathbb{L} \subset \mathbb{P}^3$$
 is ACM with $lpha(2\mathbb{L}) = lpha(\mathbb{L}) + 1$, $lpha(\mathbb{L}) > 1$

Questions

Question

Does there exist a non-ACM configuration of lines $\mathbb L$ for which $\alpha(2\mathbb L)=\alpha(\mathbb L)+1$?

Questions

Question

Does there exist a non-ACM configuration of lines \mathbb{L} for which $\alpha(2\mathbb{L}) = \alpha(\mathbb{L}) + 1$?

Question

Which configurations of lines in \mathbb{P}^3 are ACM?

Questions

Question

Does there exist a non-ACM configuration of lines $\mathbb L$ for which $\alpha(2\mathbb L)=\alpha(\mathbb L)+1$?

Question

Which configurations of lines in \mathbb{P}^3 are ACM?

Question

Which reduced (possibly irreducible) curves C in \mathbb{P}^3 have type $\alpha(2C) = \alpha(C) + 1$?

Thanks

Thank you!