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Background

Introduction
Permit me a short review

Let k be an algebraically closed field of arbitrary characteristic, and Z a
finite subset of points in PN

k .

Much is known about the Hilbert function of Z ; less is known about the
homogeneous fat point scheme 2Z .

Related to this and other numerical properties of ideals is the initial
degree, α(I ) = min {d : Id 6= 0}.

Of recent interest is the initial sequence (α(I (m)))m≥1. We will write
α(mZ ) := α(I (Z )(m)).
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Background

Initial steps of initial sequences

Bocci-Chiantini postulate values for the initial difference t = α(2Z )−α(Z )
and classify the geometry of the underlying points set Z .

Specifically, when t = 1 and Z ⊆ P2, they use Bézout’s Theorem to show
that Z is either collinear or a star configuration.

Dumnicki-Szemberg-Tutaj-Gasinska and Bauer-Szemberg investigate
related questions for larger symbolic powers and points in
higher-dimensional projective space.

Similar questions have been explored for points in P1 × P1.

Today we examine the situation for lines in P3.
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that Z is either collinear or a star configuration.

Dumnicki-Szemberg-Tutaj-Gasinska and Bauer-Szemberg investigate
related questions for larger symbolic powers and points in
higher-dimensional projective space.

Similar questions have been explored for points in P1 × P1.

Today we examine the situation for lines in P3.

Mike Janssen (Dordt College) Fat lines in P3 February 15–21 2015 3 / 13



Background

Initial steps of initial sequences

Bocci-Chiantini postulate values for the initial difference t = α(2Z )−α(Z )
and classify the geometry of the underlying points set Z .

Specifically, when t = 1 and Z ⊆ P2, they use Bézout’s Theorem to show
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Setup

Stars to Pseudostars

Definition

Let H = {H1, . . . ,Hs} be a collection of s ≥ 1 distinct hyperplanes in PN .
We assume that the intersection of any j of the hyperplanes is either
empty or has codimension j . For any 1 ≤ c ≤ min(s,N) define:

Vc(H,PN) =
⋃

1≤i1<···<ic≤s

Hi1 ∩ · · · ∩ Hic .

This union is referred to as a codimension c star configuration in PN .

We relax the definition so that the intersection of j ≥ 4 hyperplanes in P3

may equal a point and call these new configurations pseudostars.
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Setup

Example
In which four planes meet at a point.

An easy example of a pseudostar is a projective cone over a star in P2.
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Setup

ACMness

We note the following useful property of ACM subschemes of positive
dimension:

Proposition

Let X ⊆ PN be an arithmetically Cohen-Macaulay scheme of dimension at
least 1, and suppose H ⊆ PN is a general hyperplane. Let X ∩ H denote
the general hyperplane section of X , S = k[PN ], and
R = S/I (H) ∼= k[PN−1]. Then the Hilbert function of R/I (X ∩ H) is
given by

H(R/I (X ∩ H), t) = H(S/I (X ), t)− H(S/I (X ), t − 1).

Consequence: if X ⊆ PN is ACM of dimension at least 1, and H is a
general hyperplane in PN , then α(X ∩ H) = α(X ).
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Setup

ACM lines

Though not explicitly used by Bocci-Chiantini, all finite subsets of points
of PN are ACM.

Facts:

Coplanar lines and their symbolic powers are ACM.

Star configurations and their symbolic powers are ACM.

Pseudostars and their symbolic powers are ACM.
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Setup

α for pseudostars and general hyperplane sections

Lemma

Let L be a pseudo-star in P3 formed by the pairwise intersections of d ≥ 3
planes {H1, . . . ,Hd}. Then α(L) = d − 1 and α(2L) = d . *

Lemma

If d ≥ 3 lines in P3 meet a general hyperplane in collinear points, the lines
are coplanar. **
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Main Result

Characterization

Theorem (–)

Let L ⊆ P3 be a union of lines `1, `2, . . . , `s . TFAE:

(a) L is ACM of type with d = α(2L) = α(L) + 1 for some d > 1.

(b) L is either a pseudostar or coplanar.

Note: it is convenient to assume s ≥ 4 in both directions (1 ≤ s ≤ 3 can
be treated in an ad hoc fashion).

Sketch of (b) ⇒ (a): If L is coplanar, α(L) = 1 and α(2L) = 2. If L is a
pseudostar formed by the pairwise intersection of d planes, then
α(2L) = d and α(L) = d − 1 by previous slides.

Mike Janssen (Dordt College) Fat lines in P3 February 15–21 2015 9 / 13



Main Result

Characterization

Theorem (–)

Let L ⊆ P3 be a union of lines `1, `2, . . . , `s . TFAE:

(a) L is ACM of type with d = α(2L) = α(L) + 1 for some d > 1.

(b) L is either a pseudostar or coplanar.

Note: it is convenient to assume s ≥ 4 in both directions (1 ≤ s ≤ 3 can
be treated in an ad hoc fashion).

Sketch of (b) ⇒ (a): If L is coplanar, α(L) = 1 and α(2L) = 2. If L is a
pseudostar formed by the pairwise intersection of d planes, then
α(2L) = d and α(L) = d − 1 by previous slides.

Mike Janssen (Dordt College) Fat lines in P3 February 15–21 2015 9 / 13



Main Result

Characterization

Theorem (–)

Let L ⊆ P3 be a union of lines `1, `2, . . . , `s . TFAE:

(a) L is ACM of type with d = α(2L) = α(L) + 1 for some d > 1.

(b) L is either a pseudostar or coplanar.

Note: it is convenient to assume s ≥ 4 in both directions (1 ≤ s ≤ 3 can
be treated in an ad hoc fashion).

Sketch of (b) ⇒ (a): If L is coplanar, α(L) = 1 and α(2L) = 2.

If L is a
pseudostar formed by the pairwise intersection of d planes, then
α(2L) = d and α(L) = d − 1 by previous slides.

Mike Janssen (Dordt College) Fat lines in P3 February 15–21 2015 9 / 13



Main Result

Characterization

Theorem (–)

Let L ⊆ P3 be a union of lines `1, `2, . . . , `s . TFAE:

(a) L is ACM of type with d = α(2L) = α(L) + 1 for some d > 1.

(b) L is either a pseudostar or coplanar.

Note: it is convenient to assume s ≥ 4 in both directions (1 ≤ s ≤ 3 can
be treated in an ad hoc fashion).

Sketch of (b) ⇒ (a): If L is coplanar, α(L) = 1 and α(2L) = 2. If L is a
pseudostar formed by the pairwise intersection of d planes, then
α(2L) = d and α(L) = d − 1 by previous slides.

Mike Janssen (Dordt College) Fat lines in P3 February 15–21 2015 9 / 13



Main Result

Characterization

Sketch of (a) ⇒ (b): Since α is preserved by general hyperplane sections,
we have α(2(L ∩H)) = d and α(L ∩H) = d − 1, so is a star or collinear:

If L ∩ H is collinear, L is coplanar.

If a L ∩ H is a star, consider an example.
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Main Result

Proof Sketch via Star
L ⊂ P3 is ACM with α(2L) = α(L) + 1, α(L) > 1
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Main Result

Questions

Question

Does there exist a non-ACM configuration of lines L for which
α(2L) = α(L) + 1?

Question

Which configurations of lines in P3 are ACM?

Question

Which reduced (possibly irreducible) curves C in P3 have type
α(2C ) = α(C ) + 1?
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Main Result

Thanks

Thank you!
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