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Exploring Symbolic Powers
.



GENERAL DEFINITION

Definition
Let I be an ideal in a Noetherian ring R, and m ≥ 1. Then the m-th symbolic
power of I, denoted I(m), is the ideal

I(m) =
⋂

P∈Ass(I)
(ImRP ∩ R),

where RP denotes the localization of R at the prime ideal P.

Theorem
Let I be a radical ideal in a Noetherian ring R with minimal primes P1,P2, . . . , Ps.
Then I = P1 ∩ P2 ∩ · · · ∩ Ps, and

I(m) = P(m)
1 ∩ P(m)

2 ∩ · · · ∩ P(m)
s .
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THEOREM AND AN EXAMPLE

Theorem
Let R be Noetherian and suppose I ⊆ R is an ideal generated by a regular
sequence. Then I(m) = Im for all m ≥ 1.

Example
Let R = k[P2] = k[x, y, z] and p ∈ P2. Then I = I(p) can be taken to be I = (x, y), and

I(m) = (x, y)(m) = (x, y)m.
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GEOMETRIC INTERPRETATION

Theorem (Zariski, Nagata)
Let k be a perfect field, R = k[x0, x1, . . . , xN], I ⊆ R a radical ideal, and X ⊆ PN the
variety corresponding to I. Then I(m) is the ideal generated by forms vanishing to
order at least m on X.
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TWO CONTEXTS

• Ideals of (fat) points
• Squarefree monomial ideals
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The Containment Problem and Ideals
of Points
.



OUR QUESTION (FIRST DRAFT)

Question
Given a nontrivial homogeneous ideal I ⊆ k[x0, . . . , xn], how do I(m) and Ir

compare?
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COMPARING POWERS

Theorem
Let I be an ideal in a Noetherian ring R. Then:

• Im ⊆ Ir if and only if m ≥ r.

• I(m) ⊆ I(r) if and only if m ≥ r.
• if R is a domain, Im ⊆ I(r) if and only if m ≥ r.
• I(m) ⊆ Ir implies m ≥ r, but the converse need not hold.
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OUR (GENERAL) QUESTION (FINAL DRAFT)

Containment Problem: Given a nontrivial homogeneous ideal
I ⊆ k[x0, x1, x2, . . . , xN], for which m, r do we have I(m) ⊆ Ir?
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A UNIFORM BOUND

Theorem (Ein-Lazarsfeld-Smith (2001), Hochster-Huneke (2002), Ma-Schwede
(2017), Murayama (2021))
Let R be a regular ring and I a radical ideal in R of big height e. Then if m ≥ er,
I(m) ⊆ Ir.

Corollary
Let I be a nontrivial homogeneous ideal in k[PN]. If m ≥ Nr, then I(m) ⊆ Ir.

Question (Huneke)
When I = I(S) is the ideal defining any finite set S of points in P2, is it true that
I(3) ⊆ I2?
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IDEALS OF POINTS

Definition
If pi ∈ PN and Z = m1p1 +m2p2 + · · ·msps is a fat points subscheme with I = I(Z),
then

I(Z) = I(p1)m1 ∩ I(p2)m2 ∩ · · · ∩ I(ps)
ms .

The symbolic powers of I = I(Z) are therefore

I(m) = I(mZ) = I(p1)mm1 ∩ I(p2)mm2 ∩ · · · ∩ I(ps)
mms .
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COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS (2010; WITH C. BOCCI)

• Answered Huneke’s question in the affirmative for I(S) when S is a finite set
of generic points in P2.

• Introduced the resurgence, ρ(I), the supremum of the ratios m/r for which
I(m) ̸⊆ Ir, and calculated ρ for ideals of various point configurations in P2.

• Obtained bounds on ρ(I(Z)) in terms of other invariants of I(Z).
• Used these bounds to establish the sharpness of the uniform bound.
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THE RESURGENCE OF IDEALS OF POINTS AND THE CONTAINMENT PROBLEM (2010;
WITH C. BOCCI)

Theorem
Assume the points p1, . . . ,pn lie on a smooth conic curve. Let I = I(Z) where
Z = p1 + · · ·+ pn. Let m, r > 0.

1. If n is even or n = 1, then I(m) ⊆ Ir if and only if m ≥ r. In particular, ρ(I) = 1.
2. If n > 1 is odd, then I(m) ⊆ Ir if and only if (n+ 1)r− 1 ≤ nm; in particular,

ρ(I) = (n+ 1)/n.

Conjecture (B. Harbourne)
Let I ⊆ k[PN] be a homogeneous ideal. Then I(m) ⊆ Ir if m ≥ rN− (N− 1).
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Squarefree Monomial Ideals
.



Oberwolfach Mini-Workshop: Ideals of Linear Subspaces,
Their Symbolic Powers and Waring Problems (2015) 12
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TWO DEFINITIONS

Definition
Let I ⊆ k[x0, . . . , xN] be homogeneous. The initial degree of I, denoted α(I), is the
least degree of a nonzero f ∈ I.

Definition
The Waldschmidt constant, denoted α̂(I), is the limit

α̂(I) := lim
m→∞

α(I(m))

m .
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EXAMPLE

Example
Let R = k[x, y, z] and set I = (xy, yz, xz) = (x, y) ∩ (x, z) ∩ (y, z). It turns out that

I(m) = (x, y)m ∩ (x, z)m ∩ (y, z)m.

Example
Given I = (x, y) ∩ (x, z) ∩ (y, z) ⊆ k[x, y, z]:

α(I)/1 = 2/1
α(I(2))/2 = 3/2
α(I(3))/3 = 5/3
α(I(4))/4 = 6/4

...

In fact, α̂(I) = 3
2 .
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SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS

Theorem
Let I be a squarefree monomial ideal in k[x1, . . . , xN].

1. There exist unique prime ideals of the form Pi = (xi,1, . . . , xi,ti) such that
I = P1 ∩ · · · ∩ Ps.

2. With the Pi’s as above, we have

I(m) = Pm
1 ∩ · · · ∩ Pm

s .

3. For all m ≥ 1,

α(I(m)) = min{a1 + · · ·+ aN | xa11 · · · xaNN ∈ I(m)}.

We therefore have xa11 · · · xaNN ∈ I(m) if and only if ai,1 + · · ·+ ai,ti ≥ m for
i = 1, . . . , s.

15
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EXAMPLE

Example
Let I = (x1x3x5, x2x3x4, x1x2x4x5, x3x4x5) ⊆ k[x1, x2, . . . , x5]. Then

I(m) = (x1, x3)m ∩ (x2, x3)m ∩ (x1, x4)m ∩ (x3, x4)m

∩ (x2, x5)m ∩ (x3, x5)m ∩ (x4, x5)m.

Determining if xa11 xa22 xa33 xa44 xa55 ∈ I(m) is equivalent to determining if the following
system of inequalities are satisfied:

a1 + a3 ≥ m ↔ xa11 xa22 xa33 xa44 xa55 ∈ (x1, x3)m

a2 + a3 ≥ m ↔ xa11 xa22 xa33 xa44 xa55 ∈ (x2, x3)m

a1 + a4 ≥ m ↔ xa11 xa22 xa33 xa44 xa55 ∈ (x1, x4)m

...

To calculate α(I(m)), we wish to minimize a1 + a2 + a3 + a4 + a5 subject to the
above constraints.

16
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A LINEAR PROGRAM FOR α̂

Theorem (Bocci et al. (2016))
Let I ⊆ k[x1, . . . , xN] be a squarefree monomial ideal with minimal primary
decomposition I = P1 ∩ · · · ∩ Ps with Pi = (xi,1, . . . , xi,ti) for i = 1, . . . , s. Let A be the
s× n matrix where

Ai,j =

1 if xj ∈ Pi

0 if xj /∈ Pi.

Consider the following linear program (LP):

minimize 1Ty

subject to Ay ≥ 1 and y ≥ 0

and suppose y∗ is a feasible solution that realizes the optimal value. Then

α̂(I) = 1Ty∗.

That is, α̂(I) is the optimal value of the LP.
17
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Application to Edge Ideals
.



INTRO TO EDGE IDEALS

Definition
Let G be a (finite, simple) graph with vertices x1, x2, . . . , xN. The edge ideal I(G) is
the ideal in k[x1, . . . , xN] generated by the set

{xixj | {xi, xj} ∈ E(G)}.

When I = I(G), the minimal primes of I are generated by the variables
corresponding to the minimal vertex covers of G.

18
.



INTRO TO EDGE IDEALS

Definition
Let G be a (finite, simple) graph with vertices x1, x2, . . . , xN. The edge ideal I(G) is
the ideal in k[x1, . . . , xN] generated by the set

{xixj | {xi, xj} ∈ E(G)}.

When I = I(G), the minimal primes of I are generated by the variables
corresponding to the minimal vertex covers of G.

18
.



EXAMPLE: I(C5)

..
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Minimal vertex covers:
• W1 = {x1, x3, x5}
• W2 = {x1, x3, x4}
• W3 = {x1, x2, x4}
• W4 = {x2, x3, x5}
• W5 = {x2, x4, x5}

Thus,

I(C5)(m) = (x1, x3, x5)m ∩ (x1, x3, x4)m ∩ (x1, x2, x4)m

∩ (x2, x3, x5)m ∩ (x2, x4, x5)m .

19
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α̂ FOR FAMILIES OF EDGE IDEALS

Theorem (Bocci et al. (2016))
Let G be a finite simple graph with edge ideal I(G). Then

α̂(I(G)) =
χf(G)

χf(G)− 1 ,

where χf(G) denotes the fractional chromatic number of G.

Theorem (Bocci et al. (2016))
Let G be a nonempty graph.

1. If χ(G) = ω(G), then α̂(I(G)) = χ(G)
χ(G)−1 .

2. If G is k-partite, then α̂(I(G)) ≥ k
k−1 . When G is complete k-partite,

α̂(I(G)) = k
k−1 .

3. If G is bipartite, α̂(I(G)) = 2.
4. If G = C2n+1 is an odd cycle, then α̂(I(C2n+1)) =

2n+1
n+1 .

5. If G = Cc2n+1, then α̂(I(Cc2n+1)) =
2n+1
2n−1 .
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COMPARING POWERS OF EDGE IDEALS

Theorem (J–, Kamp, and Vander Woude (2019))
Let I be the edge ideal of an odd cycle on 2n+ 1 vertices. Then:

1. I(m) = Im for 1 ≤ m ≤ n.

2. I(n+1) = In+1 + (x1x2 · · · x2n+1).
3. ρ(I) = 2n+2

2n+1 .
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RESOURCES

• Symbolic Powers of Ideals
(2018), by Dao et al.

• Eloísa Grifo’s lecture notes
(2022)

• A Beginner’s Guide to Edge and
Cover Ideals (2013) by Adam Van
Tuyl
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Thanks!
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