Symbolic Powers of Edge Ideals

Mike Janssen

29 May 2015

Our project

Background: a student approached me to do an honors contract in a special topics course.

My research area: commutative algebra/algebraic geometry

Our situation

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

We will primarily consider homogeneous ideals $I \subseteq R = k[x_0, x_1, \dots, x_N]$. [The word *form* is interchangeable with *homogeneous polynomial*.]

Example

In $\mathbb{C}[X, Y, Z]$ such an ideal is $I = (XZ, YZ, X^3 - 3X^2Y - XY^2)$. A non-example is $J = (X^2 - Y, Z^2)$.

Ordinary Powers

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r}: G_i \in I)$$

Example

Let
$$I = (X, Y) \subseteq \mathbb{C}[X, Y, Z]$$
. Then $I^2 = (X^2, XY, Y^2)$, $I^3 = (X^3, X^2Y, XY^2, Y^3)$, etc.

Note: We have $I^r \subset I^t$ if and only if r > t.

ideal gets (strictly) smaller

Symbolic Powers

Definition

Given an ideal $I \subseteq R$, we define the m-th symbolic power of I to be

$$I^{(m)}=R\cap\left(\bigcap_{P}(I^{m}R_{P})\right).$$

This can reduce to a much cleaner definition if more information about I is available.

Note: We have $I^{(r)} \subseteq I^{(t)}$ if and only if $r \ge t$.

5 / 14

Ordinary vs. Symbolic

Question

What is the relationship between I^r and $I^{(m)}$?

Answer: It depends on *I*.

A partial answer: $I^r \subseteq I^{(m)}$ if and only if $r \ge m$.

A (further) partial answer: $I^{(m)} \subseteq I^r$ implies $m \ge r$.

Before elaborating, we ask: what can symbolic powers look like?

Symbolic Powers of Edge Ideals

First studied by R. Villareal in the 1990s

Let $V = \{x_1, x_2, \dots, x_n\}$ be a set of variables and consider the (simple) graph G = (V, E), where E contains 2-element sets comprised of pairs of the variables (so, e.g., $\{x_1, x_2\} \in E$ but $\{x_1, x_2, x_3\}$, $\{x_1^2\} \notin E$).

Definition

Given
$$G = (V, E)$$
 as above, the edge ideal of G is $I(G) = (x_i x_j : \{x_i, x_j\} \in E) \subseteq k[x_1, x_2, \dots, x_n].$

Fact: For an edge ideal I, $I^{(m)} = \bigcap_{i} P_{i}^{m}$, where the P_{i} correspond to minimal vertex covers of G.

$$I = I(C_5) = (x_0x_1, x_1x_2, x_2x_3, x_3x_4, x_4x_0)$$

Here, the ring is $R=k[x_0,x_1,x_2,x_3,x_4]$, and the ideals corresponding to minimal vertex covers are $P_1=(x_0,x_1,x_3)$, $P_2=(x_0,x_2,x_3)$, $P_3=(x_0,x_2,x_4)$, $P_4=(x_1,x_2,x_4)$, $P_5=(x_1,x_3,x_4)$. Then $I^{(2)}=P_1^2\cap P_2^2\cap P_3^2\cap P_4^2\cap P_5^2$ $=(x_0^2x_1^2,x_0x_1^2x_2,x_1^2x_2^2,x_0x_1x_2x_3,x_1x_2^2x_3,x_2^2x_3^2,x_0^2x_1x_4,x_0x_1x_2x_4,x_0x_1x_3x_4,x_0x_2x_3x_4,x_1x_2x_3x_4,x_2x_3^2x_4,x_0^2x_4^2,x_0x_3x_4^2,x_3^2x_4^2)$ $=I^2$

But $I^{(t)} \neq I^t$ for all t > 2.

Bipartite edge ideal characterization

Theorem (Simis-Vasconcelos-Villareal (1994))

Given an edge ideal $I = I(G) \subseteq k[x_1, x_2, ..., x_n]$ as above, the following are equivalent.

- (i) $I^{(m)} = I^m$ for all $m \ge 1$.
- (ii) The graph G is bipartite.

Edge ideals of non-bipartite graphs

A consequence of the previous theorem is: if G is not bipartite and I = I(G), then there exists a t > 0 such that $I^{(t)} \neq I^t$.

Our main question:

Problem

If I = I(G) and G is not bipartite, how do $I^{(m)}$ and I^r compare?

Problem (Invariant Problem)

Compute invariants related to the containment $I^{(m)} \subseteq I^r$.

A conjecture

Focus of the honors project at Dordt College in Spring 2015: what happens when G is not bipartite?

Conjecture (Ellis-Wilson-McLoud-Mann)

Let $I = I(C_{2n+1}) \subseteq k[x_1, \dots, x_{2n+1}]$ be the edge ideal of the odd cycle on 2n+1 vertices. Then

- $I^t = I^{(t)}$ for all $1 \le t \le n$;
- $I^t \neq I^{(t)}$ for all t > n.

 α

Of importance when discussing ideal containments is the initial degree.

Definition

Let $J \subsetneq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define

$$\alpha(J) = \min \{ d : \text{ there exists } 0 \neq f \in J, \deg(f) = d \}.$$

Note: if $\alpha(I^{(m)}) < \alpha(I^r)$ then $I^{(m)} \nsubseteq I^r$.

Example

Given an edge ideal I = I(G), $\alpha(I) = 2$ and $\alpha(I^r) = r\alpha(I) = 2r$. Computing $\alpha(I^{(m)})$ is more delicate.

Given I, the edge ideal of C_{2n+1} ,

$$\alpha(I^{(m)}) = 2m - \lfloor \frac{m}{n+1} \rfloor$$

Half-proof of the conjecture

Proposition

Let $I = I(C_{2n+1}) \subseteq k[x_1, \dots, x_{2n+1}]$ be the edge ideal of the odd cycle on 2n+1 vertices. Then $I^{(t)} \neq I^t$ for all t > n.

Proof.

We know
$$\alpha(I^t) = 2t$$
 and $\alpha(I^{(t)}) = 2t - \lfloor \frac{t}{n+1} \rfloor \leq 2t - 1 < 2t$ when $t > n$.

Our work attempting to prove the rest of the conjecture is ongoing.

Thanks

Thank you!