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Algebra↔Geometry

Example: Given a quadratic polynomial ax2 + bx+ c, what does b2 − 4ac tell us?

Algebraic structure↔Graph
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Graph Theory
.



WHAT IS A GRAPH?

Graphs describe connections.
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FORMALLY

Definition

A graph G is a pair of sets G = (V, E) where V = {x1, x2, . . . , xn} consists of vertices. The
set E of edges consists of two-element subsets of V.
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DEFINITION IN ACTION
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V = {x1, x2, x3, x4, x5, x6}

E = {{x1, x2} , {x1, x4} , {x1, x5} , {x2, x3} ,

{x2, x5} , {x3, x4} , {x3, x6} ,

{x4, x5} , {x5, x6}}
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EXAMPLE: MAPS
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SOME BIG QUESTIONS

• Is it possible to walk from vertex to
vertex, cross each edge exactly once,
and end where you began?

• Is it possible to walk along the graph
so that you visit each vertex exactly
once, and end where you began?

• What is the minimum number of
colors required to color each vertex
so that adjacent vertices are
assigned different colors?
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THE CHROMATIC NUMBER

Definition

The chromatic number of a graph G, denoted χ(G), is the minimum number of colors
required to properly color the vertices of G.
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EXAMPLE: BIPARTITE GRAPHS
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χ(G) = 2
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EXAMPLE: ODD CYCLE, C5

..

x1

.

x2

.

x3

.

x4

.

x5

.

x1

.

x2

.

x3

.

x4

.

x5

χ(G) = 3
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(MINIMAL) VERTEX COVERS

Definition

A vertex cover of a graph G = (V, E) is a set W ⊆ V such that every edge meets W. We say
W isminimal if no set K ⊊ W is a vertex cover.

Minimal Vertex Cover Problem: Given a graph G, find its minimal vertex covers.
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EXAMPLE: ODD CYCLE

Goal: Find a subsetW of V which covers every edge.
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So, aminimal vertex cover of C5 isW = {x1, x3, x5}.
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Algebraic Structure
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ABSTRACTION OF ALGEBRA

• Historically: find solutions to
polynomial equations like f(x) = 0

• Remained central to algebra into the
19th century

• Led to increasing abstraction; fields
implicit in Galois’ work in 1830

• Dedekind developed the notion of an
ideal number

• By the early 20th century, Emmy
Noether gave the modern definition
of ring and ideal
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POLYNOMIAL RINGS AND IDEALS

For us, a ring (R,+, ·) is a set closed under two operations, addition and multiplication, that
behave like the integers, Z.
Example

The set of all polynomials with real coefficients, denoted R[x], is also a ring. So is R[x, y],
which contains polynomials like y3 −

√
2y2x+ xy− 2.

Definition

An ideal I is a nonempty subset of a ring R for which there exists a (finite) set
S = {s1, s2, . . . , sn} such that any f ∈ I can be written as an R-“linear combination” of
elements of S. That is:

f = r1s1 + r2s2 + · · ·+ rnsn

We often write I = ⟨s1, s2, . . . , sn⟩.

Analogy: vector subspaces have bases! 14
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EXAMPLES OF IDEALS

Example

In Z, we have ideals such as:

• ⟨3⟩ = {3x : x ∈ Z}

• ⟨10, 15⟩ = {10x+ 15y : x, y ∈ Z}

• ⟨17, 41⟩ = {17x+ 41y : x, y ∈ Z}

Is 10 ∈ ⟨17, 41⟩? Yes! Since

10 = (−120) · 17+ 50 · 41.
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IMPORTANT EXAMPLE

Example

Consider the multivariate polynomial ring R = R[x1, x2, x3, x4, x5, x6] and the ideal

I = ⟨x1x2, x1x4, x1x5, x2x5, x4x5, x2x3, x3x4, x3x6, x5x6⟩.
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THE EDGE IDEAL CORRESPONDENCE

Definition (Simis-Vasconcelos-Villareal (1994))

Let G = (V, E) be a graph on the vertex set V = {x1, x2, . . . , xn} and let
R = R[x1, x2, . . . , xn]. The edge ideal of G is the ideal generated by products of pairs of
variables corresponding to edges in G:

I(G) =
〈
xixj |

{
xi, xj

}
∈ E

〉
.

So, each edge ideal specifies a graph and vice versa.
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BUILDING AN ALGEBRA-GRAPH THEORY DICTIONARY

Theorem

Let I = I(G) and let W1,W2, . . . ,Wk be the minimal vertex covers of G. Then
I = ⟨W1⟩ ∩ ⟨W2⟩ ∩ · · · ∩ ⟨Wk⟩.
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EXAMPLE: C5
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• W1 = {x1, x3, x5}

• W2 = {x1, x3, x4}

• W3 = {x1, x2, x4}

• W4 = {x2, x3, x5}

• W5 = {x2, x4, x5}

Thus,

I(C5) = ⟨x1, x3, x5⟩ ∩ ⟨x1, x3, x4⟩ ∩ ⟨x1, x2, x4⟩

∩ ⟨x2, x3, x5⟩ ∩ ⟨x2, x4, x5⟩.
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SYMBOLIC POWERS

Definition

Given an edge ideal I(G) = ⟨W1⟩ ∩ ⟨W2⟩ ∩ · · · ∩ ⟨Wk⟩, the m-th symbolic power of I(G) is

I(G)(m) = ⟨W1⟩m ∩ ⟨W2⟩m ∩ · · · ∩ ⟨Wk⟩m

So:
I(C5) = ⟨x1, x3, x5⟩ ∩ ⟨x1, x3, x4⟩ ∩ ⟨x1, x2, x4⟩ ∩ ⟨x2, x3, x5⟩ ∩ ⟨x2, x4, x5⟩.

and

I(C5)
(2) =

〈
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〉
∩
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〉
∩
〈
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〉
∩
〈
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2
5

〉
∩
〈
x22, x2x4, x2x5, x

2
4, x4x5, x

2
5

〉
= ⟨x24x25, x1x4x25, x21x25, x3x24x5, x2x3x4x5, x1x3x4x5, x1x2x4x5, x1x2x3x5, x21x2x5, x23x24,
x2x

2
3x4, x1x2x3x4, x

2
2x

2
3, x1x

2
2x3, x

2
1x

2
2⟩
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INVARIANTS OF IDEALS

One invariant of recent interest is theWaldschmidt constant:

α̂(I) = lim
m→∞ α(I(m))

m
,

where α(I) is the least degree of a nonzero f ∈ I.

For instance, if I = I(G), α(I) = 2. Also, we just saw that α(I(C5)
(2)) = 4.

But: α(I(C5)
(3)) = 5.

Question: If I = I(G), what is α̂(I)?

21

.



EXTENDING THE DICTIONARY

Theorem (J–, et. al (2016))
If I = I(G) is the edge ideal of a nonempty graph G, then

χ(G)
χ(G) − 1

⩽ α̂(I) ⩽ ω(G)
ω(G) − 1

.

Theorem (J–, et. al (2016))
Let G be a nonempty graph and I = I(G).

(i) If χ(G) = ω(G), then α̂(I) = χ(G)
χ(G)−1 .

(ii) If G is k-partite, then α̂(I) ⩾ k
k−1 .

(iii) If G is a complete k-partite graph, then α̂(I) = k
k−1 .

(iv) If G is bipartite, then α̂(I) = 2.

(v) If G = C2n+1, then α̂(I) = 2n+1
n+1 .
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Thank you!

22

.


	Graph Theory
	Algebraic Structure

